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Abstract. Random walks on percolation clusters of any dimension consisting of both 
directed and undirected bonds are studied. Results conjectured to be exact and supported 
by Monte Carlo simulation are deduced for the critical parameters of the problem. It is 
shown that in the undirected case of the model the probabilities of finding the particle in 
the sites of a finite cluster have a uniform limit distribution. 

1. Introduction 

The study of random walks on lattices with a certain distribution of transfer rates 
between pairs of neighbouring sites has recently arisen as an approach to the problem 
of classical diffusion in disordered systems (Odagaki and Lax 1981, Webman 1981). 
In the special case when the transfer rate is zero on a fraction (1-p) of the bonds, 
the model describes random walks on percolation clusters. This problem was intro- 
duced and called ‘the ant in the labyrinth’ by de Gennes (1976). The main quantity 
describing the process is the mean squared displacement ( R 2 ( t ) )  as a function of time 
which was obtained for site (Mitescu et a1 1978) and bond (Vicsek 1981) percolation 
problems by Monte Carlo methods and in a closed form for the Bethe lattice (Straley 
1980). 

Introducing directed bonds into percolation models has currently attracted much 
interest. Directed percolation was shown to be in a universality class different from 
the pure percolation (Blease 1977, KertCsz and Vicsek 1980, Obukhov 1980) and to 
have relevance to various physical problems (Grassberger and de la Torre 1979, Cardy 
and Sugar 1980, Van Lien and Shklovskii 1981). Transport properties such as 
conductivity (Redner 1982, Harms and Straley 1982) and wetting velocity (Dhar 
1982) in random networks consisting of resistor and diode-like elements have also 
been studied. Besides the above-mentioned important features, directed percolation 
is of interest because in some special cases it allows analytic treatment. A square 
lattice directed model with all horizontal bonds occupied was exactly solved by Domany 
and Kinzel (1981), while Wu and Stanley (1982), treating this kind of model as a 
random walk problem, obtained an exact solution for an analogously occupied 
triangular lattice. In addition, an asymptotically exact expression was given by Vicsek 
et a1 (1982) for the mean distance of random walks on directed clusters of any 
dimension. 

In this paper we study random walks on d-dimensional hypercubic lattices occupied 
by three types of bonds, allowing transitions (i) in both directions, (ii) only in the 
positive direction and (iii) only in the negative direction. The corresponding occupation 
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probabilities are p ,  p +  and p - ,  respectively, while the fraction of the empty (not 
transmitting) bonds is obviously p o  = 1 - p  - p +  - p - .  Positive directions are defined 
by the basic vectors {ei} of the Cartesian coordinates associated with the hypercubic 
lattice. The walk is defined as follows: the particle tries to proceed in a randomly 
selected direction in each unit of time. Its position is changed if the corresponding 
transition to a nearest-neighbour site is allowed (the given bond is occupied and has 
no opposite directionality); in the other case the particle stays in the original site for 
a further unit time. 

A problem similar to this was investigated by Stephen (1981) in the effective 
medium approximation. Our approach is quite different: we start from a qualitative 
analysis of the process and obtain results conjectured to be exact. These results are 
checked by Monte Carlo simulation of random walks on the square lattice. Finally, 
we investigate the p -  = pT = 0 case using a limit distribution theorem of Markov chains 
(see e.g. Renyi 1970). 

2. Critical parameters for RZ, 

In this section the long-time limit of the mean square displacement limf+,m ( R 2 ( t ) )  = RL 
is investigated as a function of the occupation probabilities p ,  p +  and p - .  

Contrary to intuitive expectations, transport (RL +a) in this model is possible 
only for rather special choices of these parameters. This behaviour can descriptively 
be interpreted by investigating the sites from the point of view of whether the particle 
can proceed from them or not. Obviously, if a site is connected only to occupied 
bonds directed towards it, the particle once arrived stays in this site forever. Several 
such combinations of directed bonds can be realised, e.g. on the square lattice the 
number of configurations consisting of three bonds directed into a site is equal to 4. 

In general, the fraction of sites on a d-dimensional simple cubic lattice in which 
the particle may be blocked is 

where the index t stands for the word trap, denoting the property that a particle can 
never leave such sites. In (1) we considered that there are (?)($ configurations 
consisting of i positively and j negatively directed bonds leading into a site from the 
2d possible directions, where (i) = k ! / m ! ( k  - m ) ! .  Besides these traps a cluster of 
bonds surrounded by bonds all directed into the perimeter sites of this cluster represents 
a trap of more general kind and is described by higher-order terms appearing in the 
model. 

Next we make use of the assumption that a finite fraction of traps results in a 
finite expectation of the time to being blocked, hence on the average the particle does 
not move away arbitrarily far from the origin. This assumption is a consequence of 
our expectation that-like in analogous models with traps-the probability of a t-step 
walk decreases exponentially with increasing t. Correspondingly, we arrive at the 
following conjecture for the exact critical parameters of the problem. There is a very 
narrow region of the parameter values in which transport is possible: the mean square 
displacement diverges only if one of the two pairs of relationships 

(i) p 2 p c  and p + = p - = O  (2a 1 
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or 

(ii) p o  = 1 - p  - p +  - p -  = 0 and p + p -  = 0 (26) 

is obeyed, since from (1) it follows that pt equals zero only in these two cases, with 
p c  being the percolation threshold of the isotropic problem. Therefore, adding directed 
bonds to an already percolating network of undirected bonds stops the transport due 
to the traps necessarily appearing in the system. 

In figure 1, we marked with bold lines those values of the parameters p ,  p +  and 
p -  for which ( 2 a )  or (26) is valid. Lines Ap,, AB and E are critical in the sense 
that RL diverges with a certain exponent when these parameter values are approached. 
These critical lines are supposed to be exact, since the only assumption we used in 
obtaining them was that a finite probability of being trapped leads to a finite mean 
squared length of the walks. Montroll (1969) showed that at least this is so (RL <CO) 

in a lattice with p = 1 and regularly distributed traps, but we are not aware of any 
exact proof concerning our particular model. Therefore, we carried out a Monte 
Carlo simulation of the problem on the square lattice. (Details of the method are 
described in Vicsek 1981.) It was found that the particle is indeed blocked sooner 
or later if (2a)  or (26) is not obeyed. 

- -  

Figure 1. Critical values of the parameters p ,  p ,  and p - .  The long-time limit of the mean 
squared displacement becomes singular when the Gc, AB and AC intervals are 
approached. 

In one of our Monte Carlo calculations we approached the AB critical line along 
the p = p + ,  p -  = 0 line. Dependence of RL on the quantity Ap = 1 - p  - p +  in this case 
is shown in figure 2. Defining a critical exponent U through RL - (Ap)-”, we get from 
the slope of this log-log plot U = 4.3 f 0.5, in good agreement with the value U = 4 
obtained for the fully directed model (Vicsek et a1 1982). This fact seems to support 
the assumption that the directionality is a relevant parameter: introducing directed 
bonds into an undirected model, we recover the same critical exponent as in the fully 
directed case. The result U = 4 is expected on the basis of (1) as well, since when 
( p  + p + )  += 1 the number of traps decreases quadratically, while RL for the directed 
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log lhpl 

Figure 2. Dependence of the lirn!+- ( R 2 ( t ) )  = R& values on Ap = 1 - p  - p +  for p -  = 0. 
From the slope of this log-log plot we obtain the exponent U = 4 . 3 i O . 5 .  

walks is proportional to the square of the inverse of the trapping probability. In 
general, U = 2d since the leading term in (1) describing the trap concentration is p i .  

The lines of singular behaviour shown in figure 1 are qualitatively different from 
those obtained by Stephen (1981) from an effective medium approximation (EMA). 

According to his results, the transport is possible in a relatively wide, three- 
dimensional region of parameters p ,  p +  and p - .  Hence EMA turns out to be .an 
unexpectedly inaccurate approximation for the description of directed walks. 

3. Limit distribution for walks on finite undirected clusters 

The p < p c ,  p +  = p -  = 0 limit (undirected walks below the percolation threshold) has 
further interesting problems to be clarified. In particular, one may put the question: 
what is the probability q, of finding the particle in the jth site of a finite cluster after 
a long time? This problem first arose in Monte Carlo simulations, where results turned 
out to depend on the definition of the walk (Roussenq 1980, Vicsek 1981). 

The random walk defined in the introduction corresponds to an N-state Markov 
chain ( N  is the number of sites in the cluster) characterised by the transition matrix 
P = { p t , } ,  where ptj is the probability of the transition from the state i into state j .  
Obviously, P is symmetrical ( p ,  = p l I )  in the p +  = p -  = O  case and p z j  = l / z  if the 
corresponding bond is occupied, while pz, may take the values 0, l / z ,  . . . , (z - l)/z, 
1, z being the coordination number. 

Introducing p f ; ) ,  the n -step transition probability between sites i and j ,  we can 
use a limit distribution theorem of Markov (RCnyi 1970, Markov 1912). According 
to this theorem the limit values 
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exist if there are integers k > 0 and io > 0 such that the inequalities 

pi;; > o  (i = 1,2,  . . . , N )  (4) 

hold. Besides, ( ~ 7 ~ )  is the only solution of the system of equations 

satisfying the condition E:’=, 4i = 1. {s i }  is called the limit distribution of the Markov 
process and qj is equal to the probability of being in the state j when t -* 00. 

Condition (4) is always satisfied if random walks on a finite undirected percolation 
cluster are considered: from any sites of this cluster all the others can be reached in 
less than N steps, therefore, the transition probability corresponding to such walks 
is greater than zero. However, in order to avoid some undesired oscillating effects it 
is also required that for a given j o  (4) must hold with the same k for all i. The 
fulfilment of this condition is provided by the fact that in a finite cluster there must 
always be at least one site for which p i i  > 0. 

Finally, we make use of the fact that P is symmetrical, therefore, as a consequence 
of the trivial ZE1 pii  = 1, the relationship 

is valid as well. Let us substitute {e} = 1,” into the system of equations (5 ) .  Because 
of (6) we obtain an identity and taking into account that ( 5 )  has only one solution 
this is the true distribution we were looking for. Of course, random walk definitions 
leading to a transition matrix contradicting (6 )  (e.g. Mitescu et a1 1978) result in a 
non-uniform distribution of the 4i values. 

4. Conclusions 

The problem of random walks on percolation clusters made of directed and undirected 
bonds has been shown to have similarities with the so-called trap models. The critical 
parameters of the process have been determined from the condition that the fraction 
of sites where the particle may be blocked should be equal to zero. These results are 
in agreement with the Monte Carlo simulations and conjectured to be exact. Finally, 
it was shown using a theorem on Markov chains that for a properly defined random 
walk the probabilities of finding the particle in the sites of a finite undirected cluster 
are distributed uniformly in the t + 00 limit. 
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